
In the previous chapter, we enumerated 
running processes and extracted informa-

tion that could help us heuristically detect 
malware. However, we didn’t cover how to exam-

ine the actual binary that backed each process. This 
chapter describes how to programmatically parse and 
analyze universal and Mach-O, the native executable 
binary !le format of macOS.

You’ll learn how to extract information such as a binary’s dependencies 
and symbols, as well as detect whether the binary contains anomalies, such 
as encrypted data or instructions. This information will improve your abil-
ity to classify a binary as malicious or benign.

Universal Binaries
The majority of Mach-O binaries are distributed in universal binaries. 
Called fat binaries in Apple parlance, these are containers for multiple 
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architecture-speci!c (but generally logically equivalent) Mach-O binaries 
known as slices. At runtime, the macOS dynamic loader (dyld) will load and 
then execute whichever embedded Mach-O binary best matches the host’s 
native architecture (for example, Intel or ARM). Because these embedded 
binaries hold the information you’re looking to extract, such as depen-
dencies, you must !rst understand how to programmatically parse the 
universal binary.

Inspecting
Apple’s file utility can inspect universal binaries. For example, the 
CloudMensis malware is distributed as a universal binary named Window 
Server containing two Mach-O binaries: one compiled for Intel x86_64 
and one for Apple Silicon ARM64 systems. Let’s execute file against 
CloudMensis. As you can see, the tool identi!es it as a universal binary and 
shows its two embedded Mach-Os:

% file CloudMensis/WindowServer
CloudMensis/WindowServer: Mach-O universal binary with 2 architectures:
[x86_64:Mach-O 64-bit executable x86_64] [arm64:Mach-O 64-bit executable arm64]

CloudMensis/WindowServer (for architecture x86_64): Mach-O 64-bit executable x86_64
CloudMensis/WindowServer (for architecture arm64):  Mach-O 64-bit executable arm64

To programmatically access these embedded binaries, we have to parse 
the universal binary’s header, which contains the offset of each Mach-O. 
Luckily, parsing the header is straightforward. Universal binaries start with 
a fat_header structure. We can !nd relevant universal structures and con-
stants in Apple’s SDK mach-o/fat.h header !le:

struct fat_header {
    uint32_t    magic;        /* FAT_MAGIC or FAT_MAGIC_64 */
    uint32_t    nfat_arch;    /* number of structs that follow */
};

Apple’s comments in this header !le indicate that magic, the !rst member 
of the fat_header structure (an unsigned 32-bit integer), will contain the con-
stant FAT_MAGIC or FAT_MAGIC_64. The use of FAT_MAGIC_64 means the next struc-
tures are of the type fat_arch_64, used when the following slice or offset to it is 
greater than 4GB.1 Comments in Apple’s fat.h header !les note that support 
for this extended format is a work in progress, and universal binaries are 
rarely, if ever, so massive, so we’ll focus on the traditional fat_arch structure in 
this chapter.

Not mentioned in the fat_header structure’s comments is the fact that 
the values in the structure are assumed to be big-endian, a vestige of the  
OSX PPC days. Therefore, on little-endian systems such as Intel and 
Apple Silicon, when you read a universal binary into memory, values such  
as the 4 bytes for magic will appear in reverse-byte order.

Apple accounts for this fact by providing the “swapped” magic constant 
FAT_CIGAM. (Yes, CIGAM is just magic backward.) The hexadecimal value of this 
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constant is 0xbebafeca.2 We can see this value by using xxd to dump the bytes 
at the start of the CloudMensis universal binary. On a little-endian host, we 
make use of the -e #ag to display the hexadecimal values in little-endian:

% xxd -e -c 4 -g 0 CloudMensis/WindowServer
00000000: bebafeca ...
...

The output, when interpreted as a 4-byte value, will have the host’s endi-
anness applied, which explains why we see the swapped universal magic value 
FAT_CIGAM (0xbebafeca).

Following the magic !eld in the fat_header structure, we !nd the nfat_arch 
!eld, which speci!es the number of fat_arch structures. We’ll !nd one 
fat_arch structure for each architecture-speci!c Mach-O binary embedded 
in the universal binary. As illustrated in Figure 2-1, these structures imme-
diately follow the fat header.

Fat header
(magic, nfat_arch)

Mach-O #1

fat_arch #2

fat_arch #1

Mach-O #2

Figure 2-1: The layout of a universal binary

Because file showed that CloudMensis contained two embedded 
Mach-Os, we’d expect to see nfat_arch set to 2. We con!rm that this is the 
case by using xxd once again. This time, though, we skip the -e #ag so as to 
keep the values in big endian:

% xxd -c 4 -g 0 CloudMensis/WindowServer
...
00000004: 00000002 ...

You can !nd the fat_arch structure de!nition in the fat.h header !le:

struct fat_arch {
    cpu_type_t       cputype;       /* cpu specifier (int) */
    cpu_subtype_t    cpusubtype;    /* machine specifier (int) */
    uint32_t         offset;        /* file offset to this object file */
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    uint32_t    size;     /* size of this object file */
    uint32_t    align;    /* alignment as a power of 2 */
};

The !rst two members of the fat_arch structure specify the CPU type 
and subtype of the Mach-O binary, while the next two specify the offset and 
size of this slice.

Parsing
Let’s programmatically parse a universal binary and locate each embedded 
Mach-O binary. We’ll show two methods of doing so: using the older NX* 
APIs compatible with older versions of macOS and the newer Macho* APIs 
available on macOS 13 and newer.

N O T E  You can !nd the code mentioned in this chapter in the parseBinary project in the 
book’s GitHub repository at https://github.com/Objective-see/TAOMM.

NX* APIs
We’ll begin by checking whether the !le is indeed a universal binary. Then 
we’ll iterate over all fat_arch structures, printing out their values, and leverage 
the NXFindBestFatArch API to !nd the embedded binary most compatible with 
the host’s architecture. The system will load and execute this binary when the 
universal binary is launched, so it’s the one we’ll focus on in our analysis.

Your own code may instead want to examine each embedded Mach-O 
binary, especially as nothing stops a developer from making these binaries 
completely different. Although you’ll rarely !nd this to be the case, the 
2023 3CX supply chain attack provides one notable exception. To trojanize 
the 3CX application, attackers subverted a legitimate universal binary that 
contained both Intel and ARM binaries, adding malicious code to the for-
mer and leaving the ARM binary untouched.

Let’s start by loading a !le and performing some initial checks 
(Listing 2-1).

#import <mach-o/fat.h>
#import <mach-o/arch.h>
#import <mach-o/swap.h>
#import <mach-o/loader.h>

int main(int argc, const char* argv[]) {

    NSData* data = [NSData dataWithContentsOfFile:[NSString stringWithUTF8String:argv[1]]]; 1
    struct fat_header* fatHeader = (struct fat_header*)data.bytes; 2

    if( (FAT_MAGIC == fatHeader->magic) || 3
        (FAT_CIGAM == fatHeader->magic) ) {
        printf("\nBinary is universal (fat)\n");
        struct fat_arch* bestArch = parseFat(argv[1], fatHeader);

https://github.com/Objective-see/TAOMM
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        ...
    }
    ...
}

Listing 2-1: Loading, validating, and finding the “best” slice of a universal binary

After reading the contents of the !le into memory 1 and typecasting 
the initial bytes to a struct fat_header * 2, the code checks that it is indeed 
a universal binary 3. Note that it checks both the big-endian (FAT_MAGIC) 
and little-endian (FAT_CIGAM) versions of the magic value.

To keep things simple, this code doesn’t support the large fat !le 
format. Moreover, for production code, you should perform other sanity 
checks, such as ensuring that the !le was successfully loaded and that it’s 
bigger than the size of a fat_header structure.

The parsing logic lives in a helper function named parseFat, which you 
can see invoked in Listing 2-1. After printing out the fat header, this func-
tion will iterate over each fat_arch structure and return the most compatible 
Mach-O slice.

First, though, we must deal with any differences in endianness. The val-
ues in the fat_header and fat_arch structures are always in big-endian order, 
so on little-endian systems such as Intel and Apple Silicon, we must swap 
them. To do so, we !rst invoke the NXGetLocalArchInfo API to determine the 
host’s underlying byte order (Listing 2-2). We’ll use the value returned, a 
pointer to an NXArchInfo structure, to swap the endianness (as well as later, 
to determine the most compatible Mach-O).

struct fat_arch* parseFat(const char* file, NSData* data) {
    const NXArchInfo* localArch = NXGetLocalArchInfo();

Listing 2-2: Determining the local machine’s architecture

You might notice that the NXGetLocalArchInfo and swap_* APIs are marked 
as deprecated, although they’re still available and fully functional at the 
time of publication. You can use replacement macho_* APIs, found in mach-o/
utils.h, on macOS 13 and newer, and you’ll learn about this in the next sec-
tion. However, until macOS 15, one of these new APIs was broken, so you 
may still want to stick to the older APIs.

Next, we perform the swap with the swap_fat_header and swap_fat_arch 
functions (Listing 2-3).

struct fat_header* header = (struct fat_header*)data.bytes;

if(FAT_CIGAM == header->magic) { 1
    swap_fat_header(header, localArch->byteorder); 2
    swap_fat_arch((struct fat_arch*)((unsigned char*)header + sizeof(struct fat_header)),
    header->nfat_arch, localArch->byteorder); 3
}
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printf("Fat header\n");
printf("fat_magic %#x\n", header->magic);
printf("nfat_arch %d\n",  header->nfat_arch);

Listing 2-3: Swapping the fat header and fat architecture structures to match the host’s byte ordering

The code !rst checks whether a swap is needed 1. Recall that if the 
magic constant of the fat header is FAT_CIGAM, the code is executing on a 
little-endian host, so we should perform a swap. By invoking the helper 
APIs swap_fat_header 2 and swap_fat_arch 3, the code converts the header 
and all fat_arch values to match the host’s byte ordering, as returned by 
NXGetLocalArchInfo. The latter API takes the number of fat_arch structures to 
swap, which the code provides via the nfat_arch !eld of the now-swapped fat 
header.

Once the header and all fat_arch structures conform to the host’s byte 
ordering, the code can print out details of each embedded Mach-O binary 
that the fat_arch structures describe (Listing 2-4).

struct fat_arch* arch = (struct fat_arch*)((unsigned char*)header + sizeof(struct fat_header));

for(uint32_t i = 0; i < header->nfat_arch; i++) { 1
    printf("architecture %d\n", i);
    printFatArch(&arch[i]);
}

void printFatArch(struct fat_arch* arch) { 2
    int32_t cpusubtype = 0;
    cpusubtype = arch->cpusubtype & ~CPU_SUBTYPE_MASK; 3

    printf(" cputype %u (%#x)\n", arch->cputype, arch->cputype);
    printf(" cpusubtype %u (%#x)\n", cpusubtype, cpusubtype);
    printf(" capabilities 0x%#x\n", (arch->cpusubtype & CPU_SUBTYPE_MASK) >> 24);
    printf(" offset %u (%#x)\n", arch->offset, arch->offset);
    printf(" size %u (%#x)\n", arch->size, arch->size);
    printf(" align 2^%u (%d)\n", arch->align, (int)pow(2, arch->align));
}

Listing 2-4: Printing out each fat_arch structure

The code starts by initializing a pointer to the !rst fat_arch structure, 
which comes immediately after the fat_header. Then it iterates over each, 
bounded by the nfat_arch member of the fat_header 1. To print out values 
from each fat_arch structure, the code invokes a helper function we’ve named 
printFatArch 2, which !rst separates the CPU subtype and its capabilities, as 
both are found in the cpusubtype member. Apple provides the CPU_SUBTYPE 
_MASK constant to extract just the bits that describe the subtype 3.

Let’s run this code against CloudMensis. It outputs the following:

% ./parseBinary CloudMensis/WindowServer
Binary is universal (fat)
Fat header
fat_magic 0xcafebabe
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nfat_arch 2
architecture 0
    cputype 16777223 (0x1000007)
    cpusubtype 3 (0x3)
    capabilities 0x0
    offset 16384 (0x4000)
    size 708560 (0xacfd0)
    align 2^14 (16384)
architecture 1
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0x0
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    align 2^14 (16384)

From the output, we can see the malware’s two embedded Mach-O 
binaries:

• At offset 16384, a binary compatible with CPU_TYPE_X86_64 (0x1000007) 
that is 708,560 bytes long

• At offset 737280, a binary compatible with CPU_TYPE_ARM64 (0x100000c) 
that is 688,176 bytes long

To con!rm the accuracy of this code, we can compare this output against 
the macOS otool command, whose -f #ag parses and displays fat headers:

% otool -f CloudMensis/WindowServer
Fat headers
fat_magic 0xcafebabe
nfat_arch 2
architecture 0
    cputype 16777223
    cpusubtype 3
    capabilities 0x0
    offset 16384
    size 708560
    align 2^14 (16384)
architecture 1
    cputype 16777228
    cpusubtype 0
    capabilities 0x0
    offset 737280
    size 688176
    align 2^14 (16384)

In the tool’s output, we see the same information about the malware’s 
two embedded binaries.

Next, let’s add some code to determine which of the embedded Mach-O 
binaries matches the host’s native architecture. Recall that we already 
invoked the NXGetLocalArchInfo API to retrieve the host architecture. Moreover, 
we also showed how to compute the offset to the !rst fat_arch structure, 
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which immediately follows the fat header. To !nd the natively compatible 
Mach-O, we can now invoke the NXFindBestFatArch API (Listing 2-5).

bestArchitecture = NXFindBestFatArch(localArch->cputype, localArch->
cpusubtype, arch, header->nfat_arch);

Listing 2-5: Determining a universal binary’s best architecture

We pass the API the host’s architecture, a pointer to the start of the fat 
_arch structures, and the number of these structures. The NXFindBestFatArch 
API will then determine the Mach-O binary from within the universal 
binary that is the most compatible with the host’s native architecture. Recall 
the parseFat helper function returns this value and prints it out.

If we add this code to the binary parser and then run it again against 
CloudMensis, it outputs the following:

% ./parseBinary CloudMensis/WindowServer
...
best architecture match
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0x0
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    align 2^14 (16384)

On an Apple Silicon (ARM64) system, the code has correctly deter-
mined that the second embedded Mach-O binary, with a CPU type of 
16777228/0x100000c (CPU_TYPE_ARM64), is the most compatible Mach-O in the 
universal CloudMensis binary. When launching this universal binary, we 
can use the Kind column in Activity Monitor to con!rm that macOS indeed 
selected and ran the Apple Silicon Mach-O (Figure 2-2).

Figure 2-2: The CloudMensis binary WindowServer running as a native Apple  
Silicon binary
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Another way to con!rm that CloudMensis runs as a native Apple Silicon 
binary is to use the enumerateProcesses project presented in Chapter 1. Recall 
that it extracts the architecture of each running process:

% ./enumerateProcesses
...
(1990):/Library/WebServer/share/httpd/manual/WindowServer
...
architecture: Apple Silicon

We receive the same result.

Macho* APIs
In macOS 13, Apple introduced the macho_* APIs. Found in mach-o/utils.h, 
these APIs offer a simpli!ed way to iterate over Mach-O binaries in a uni-
versal binary and select the most compatible one. The deprecated NX* APIs 
still work for this purpose, but if you’re developing tools on macOS 13 or 
later, it’s wise to instead use the newer functions.

The macho_for_each_slice API lets us extract a universal binary’s Mach-Os 
without having to manually parse the universal header or deal with the 
nuances of byte orderings. We invoke this function with a path to a !le and 
callback block to run for each Mach-O slice. If invoked against a stand-alone 
Mach-O, the function will run its callback just once, and if the !le isn’t a well- 
formed universal binary or Mach-O, the function will gracefully fail, meaning 
we don’t have to manually verify the !le type ourselves. The mach-o/utils.h 
header !le includes the possible return values and their meanings:

ENOENT - path does not exist
EACCES - path exists but caller does not have permission to access it
EFTYPE - path exists but it is not a Mach-o or fat file
EBADMACHO - path is a Mach-o file, but it is malformed

The callback block invoked for each embedded Mach-O has the follow-
ing type:

void (^ _Nullable callback)(const struct mach_header* _Nonnull slice,
uint64_t offset, size_t size, bool* _Nonnull stop)

This type might look a little confusing at !rst, but if we focus solely on 
the parameters, we see that the callback will be invoked with a variety of 
information about the slice, including a pointer to a mach_header structure, 
the slice’s offset, and its size.

The code in Listing 2-6, part of the parseFat helper function, invokes 
macho_for_each_slice to print out information about each embedded Mach-O. 
It also includes some basic error handling, which we can use to !lter out 
!les that are neither universal nor Mach-Os.
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struct fat_arch* parseFat(const char* file, struct fat_header* header) {
    ...
    if(@available(macOS 13.0, *)) {
        __block int count = 0;

        int result = macho_for_each_slice(file,
        ^(const struct mach_header* slice, uint64_t offset, size_t size, bool* stop) { 1
            printf(“architecture %d\n”, count++); 2
            printf(“offset %llu (%#llx)\n”, offset, offset);
            printf(“size %zu (%#zx)\n”, size, size);
            printf(“name %s\n\n”, macho_arch_name_for_mach_header(slice)); 3
        });
        if(0 != result) {
            printf(“ERROR: macho_for_each_slice failed\n”);

            switch(result) { 4
                case EFTYPE:
                    printf(“EFTYPE: path exists but it is not a Mach-o or fat file\n\n”);
                    break;

                case EBADMACHO:
                    printf(“EBADMACHO: path is a Mach-o file, but it is malformed\n\n”);
                    break;

                ...
            }
        }
    }
    ...
}

Listing 2-6: Iterating over all embedded Mach-Os

This code invokes the macho_for_each_slice function 1. In the callback 
block, we print out a counter variable followed by the slice’s offset and 
size 2. We also make use of the macho_arch_name_for_mach_header function to 
print out the name of each slice’s architecture 3.

If the user-speci!ed !le isn’t a well-formed universal or Mach-O binary, 
the function will fail. The code handles this, printing out a generic error 
message, as well as additional information for common errors 4.

If we add this code to the parseBinary project and then run it against the 
CloudMensis universal binary, it should print out the same offset and size 
values for the malware’s two embedded Mach-Os as the code that leveraged 
the NX* APIs:

% ./parseBinary CloudMensis/WindowServer
...
architecture 0
    offset 16384 (0x4000)
    size 708560 (0xacfd0)
    name x86_64



Parsing Binaries!!!49

architecture 1
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    name arm64

Now, what about !nding the most compatible slice, or the one that the 
host would load and run if the universal binary were executed? The macho 
_best_slice function is designed to return exactly that. It takes a path to a 
!le to inspect and a callback block to invoke with the best slice. Add the 
function in Listing 2-7 to the previous code.

result = macho_best_slice(argv[1],
^(const struct mach_header* _Nonnull slice, uint64_t offset, size_t sliceSize) {
    printf("best architecture\n");
    printf("offset %llu (%#llx)\n", offset, offset);
    printf("size %zu (%#zx)\n", sliceSize, sliceSize);
    printf("name %s\n\n", macho_arch_name_for_mach_header(slice));
});
if(0 != result) {
    printf("ERROR: macho_best_slice failed with %d\n", result);
}

Listing 2-7: Invoking macho_best_slice to find the best slice

If we run this against CloudMensis (on a version of macOS prior to 15), 
however, it fails with the value 86:

% ./parseBinary CloudMensis/WindowServer
...
ERROR: macho_best_slice failed with 86

According to the mach-o/utils.h header !le, this error value maps to 
EBADARCH, which means none of the slices can load. This is odd, considering 
that the NXFindBestFatArch function identi!ed the embedded ARM64 Mach-O 
binary as compatible with my Apple Silicon analysis machine. Moreover, this 
ARM64 Mach-O de!nitely runs, as you saw in Figure 2-2. It turns out, as is 
often the case with new APIs from Apple, that the macho_best_slice function 
was broken until macOS 15. On older versions of macOS, for any third-party 
universal binary on Apple Silicon systems, the function returns EBADARCH.

Reverse engineering, as well as studying the code of dyld,3 revealed the 
cause of the error: instead of passing a list of compatible CPU types (such as 
arm64 or x86_64) to the slice selection function, the code incorrectly passed 
in only the CPU type for which the operating system was compiled. On 
Apple Silicon, this CPU type is arm64e (CPU_SUBTYPE_ARM64E), used exclusively 
by Apple. This explains why the selection logic never chose slices in third-
party universal binaries, which are compiled as arm64 or x86_64 (but never 
arm64e), and instead returned the EBADARCH error.

You can read more about the bug in my write-up “Apple Gets an ‘F’ 
for Slicing Apples.”4 My analysis proposed a simple !x: instead of invok-
ing the GradedArchs::forCurrentOS method, Apple should have invoked 
GradedArchs::launchCurrentOS to obtain the correct list of compatible CPU 
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types. The good news is that Apple eventually took this recommendation, 
meaning that macho_best_slice on macOS 15 and above works as expected.

Now that you know how to parse universal binaries, let’s turn our atten-
tion to the Mach-O binaries embedded within them.5

Mach-O Headers
Mach-O binaries contain the information we’re after, such as dependencies 
and symbols. To programmatically extract these, we must parse the Mach-O’s  
header. In a universal binary, we can locate this header by analyzing the fat 
header and architecture structures, as you saw in the previous section. In a 
single-architecture, stand-alone Mach-O, !nding the header is trivial, as it’s 
located at the start of the !le.

Listing 2-8 follows the code that identi!es the best Mach-O within a 
universal binary. It con!rms that the slice is indeed a Mach-O, then handles 
cases in which a !le is a stand-alone Mach-O.

NSData* data = [NSData dataWithContentsOfFile:[NSString stringWithUTF8String:argv[1]]];

struct mach_header_64* machoHeader = (struct mach_header_64*)data.bytes; 1

if( (FAT_MAGIC == fatHeader->magic) ||
    (FAT_CIGAM == fatHeader->magic) ) {
    // Removed the code that finds the best architecture, for brevity
    ...
    machoHeader = (struct mach_header_64*)(data.bytes + bestArch->offset); 2
}

if( (MH_MAGIC_64 == machoHeader->magic) || 3
    (MH_CIGAM_64 == machoHeader->magic) ) {
    printf("binary is Mach-O\n");
    // Add code here to parse the Mach-O.
}

Listing 2-8: Finding the relevant Mach-O header

After loading the !le into memory, we typecast the bytes at the start of 
the !le to a mach_header_64 structure 1. If the binary is universal, we !nd the 
fat_arch structure that describes the most compatible embedded Mach-O. 
Using this structure’s offset member, we update the pointer to point to the 
embedded binary 2.

Before we parse the binary, we must verify that the pointer really points 
to the start of the Mach-O. We take a simple veri!cation approach: check-
ing for the presence of a Mach-O magic value 3. Because the binary’s 
header and the host machine architecture could have different endianness, 
the code checks for both the MH_MAGIC_64 and MH_CIGAM_64 constants, de!ned 
in Apple’s mach-o/loader.h header !le:

#define MH_MAGIC_64 0xfeedfacf
#define MH_CIGAM_64 0xcffaedfe
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For the sake of simplicity, the code skips recommended sanity and error 
checks. For example, production code should, at the very minimum, ensure 
that the size of the read-in bytes is greater than sizeof(struct mach_header_64) 
before dereferencing offsets in the header.

N O T E  Mach-O headers are of  type mach_header or mach_header_64. Recent versions of macOS 
support 64-bit code only, so this section focuses on mach_header_64, de!ned in 
mach-o/loader.h.

Now that we’re sure we’re looking at a Mach-O, we can parse it. Listing 2-9 
de!nes a helper function named parseMachO for this purpose. It takes a 
pointer to the mach_header_64 structure.

void parseMachO(struct mach_header_64* header) {
    if(MH_CIGAM_64 == machoHeader->magic) {
        swap_mach_header_64(machoHeader, ((NXArchInfo*)NXGetLocalArchInfo())->byteorder);
    }
    ...
}

Listing 2-9: Swapping the Mach-O header to match the host’s byte ordering

Because the binary’s header and the host machine could have a differ-
ent endianness, the code !rst checks for the swapped Mach-O magic value. 
If you encounter it, swap the header via the swap_mach_header_64 API. Note 
here that the code makes use of the macOS NXGetLocalArchInfo function, 
but if you’re writing code for versions of macOS 13 or newer, you should 
use the more modern macho* APIs (again noting that the macho_best_slice 
function was broken until macOS 15).

To print out the Mach-O header, we write a helper function, printMachO 
Header (Listing 2-10).

void printMachOHeader(struct mach_header_64* header) {
    int32_t cpusubtype = 0;
    cpusubtype = header->cpusubtype & ~CPU_SUBTYPE_MASK;

    printf("Mach-O header\n");
    printf(" magic %#x\n", header->magic);
    printf(" cputype %u (%#x)\n", header->cputype, header->cputype);
    printf(" cpusubtype %u (%#x)\n", cpusubtype, cpusubtype);
    printf(" capabilities %#x\n", (header->cpusubtype & CPU_SUBTYPE_MASK) >> 24);

    printf(" filetype %u (%#x)\n", header->filetype, header->filetype);

    printf(" ncmds %u\n", header->ncmds);
    printf(" sizeofcmds %u\n", header->sizeofcmds);

    printf(" flags %#x\n", header->flags);
}

Listing 2-10: Printing out a Mach-O header
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You can !nd an overview of each header member in the comments of 
the mach_header_64 structure de!nition. For example, following the magic 
!eld are the two !elds that describe the binary’s compatible CPU type and 
subtype. The cpusubtype member also contains the binary’s capabilities, and 
these can be extracted into their own !eld.

The file type indicates whether the binary is a stand-alone executable 
or a loadable library. The next !elds describe the number and size of the 
binary’s load commands, which we’ll make extensive use of shortly. Finally, 
the flags member of the structure indicates additional optional features, such 
as whether the binary is compatible with address space layout randomization.

Let’s run the Mach-O parsing code against CloudMensis. After search-
ing the universal header, the tool !nds the compatible Mach-O header and 
then prints it out:

% ./parseBinary CloudMensis/WindowServer
Mach-O header:
    magic 0xfeedfacf
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0
    filetype 2 (0x2)
    ncmds 28
    sizeofcmds 4192
    flags 0x200085

This output matches that of Apple’s otool, whose -h #ag instructs it to 
print out the Mach-O header:

% otool -h CloudMensis/WindowServer
...
CloudMensis/WindowServer (architecture arm64):
Mach header
 magic       cputype    cpusubtype   caps   filetype  ncmds  sizeofcmds  flags
 0xfeedfacf  16777228   0            0x00   2         28     4192        0x00200085

Running otool with the -v #ag converts the returned numerical values 
into symbols:

% otool -hv CloudMensis/WindowServer
...
CloudMensis/WindowServer (architecture arm64):
Mach header
magic        cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64  ARM64   ALL        0x00 EXECUTE  28    4192       NOUNDEFS DYLDLINK
                                                               TWOLEVEL PIE

These values con!rm that our tool works as expected.
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Load Commands
Load commands are instructions to dyld that immediately follow the 
Mach-O header. A header !eld named ncmds speci!es the number of load 
commands, and each command is a structure of type load_command contain-
ing the command type (cmd) and size (cmdsize), as you can see here:

struct load_command {
   uint32_t cmd;        /* type of load command */
   uint32_t cmdsize;    /* total size of command in bytes */
};

Some load commands describe the segments in the binary, such as the 
__TEXT segment that contains the binary’s code, while others describe depen-
dencies, the location of the symbol table, and more. As such, code that aims 
to extract information found within Mach-Os will generally start by parsing 
load commands.

Listing 2-11 de!nes a helper function named findLoadCommand for this pur-
pose. It takes a pointer to a Mach-O header and the type of load command 
to !nd. After locating the start of the load commands, it iterates over each to 
create an array containing commands that match the speci!ed type.

NSMutableArray* findLoadCommand(struct mach_header_64* header, uint32_t type) {
    NSMutableArray* commands = [NSMutableArray array];
    struct load_command* command = NULL;

    command = (struct load_command*)((unsigned char*)header + sizeof(struct mach_header_64)); 1

    for(uint32_t i = 0; i < header->ncmds; i++) { 2
        if(type == command->cmd) { 3
            [commands addObject:[NSValue valueWithPointer:command]]; 4
        }
        command = (struct load_command*)((unsigned char*)command + command->cmdsize); 5
    }

    return commands;
}

Listing 2-11: Iterating over all load commands and collecting those that match a specified type

We start by calculating a pointer to the !rst load command, which 
immediately follows the Mach-O header 1. Then we iterate over all load 
commands, which appear one after another 2, and check the cmd member 
of each to see if it matches the speci!ed type 3. As we can’t directly store 
pointers in an Objective-C array, we !rst create an NSValue object with the 
load command’s address 4. Finally, we advance to the next load command. 
Load commands can vary in size, so we use the current command’s cmdsize 
!eld 5 to !nd the next one.

With an understanding of load commands and a helper function that 
returns commands of interest, let’s now consider a few examples of pertinent 
information we can extract, starting with dependencies.
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Extracting Dependencies
One of the reasons to parse Mach-Os is to extract their dependencies: 
dynamic libraries that dyld will automatically load. Understanding the 
dependencies of a binary can provide insight into its likely capabilities 
or even uncover malicious dependencies. For example, CloudMensis 
links against the DiskArbitration framework, which provides APIs to 
interact with external disks. Using this framework’s APIs, the malware 
monitors for the insertion of removable USB drives so it can ex!ltrate 
external !les.

When writing code, we can often achieve the same outcome in several 
ways. For example, in Chapter 1, we extracted all loaded libraries and 
frameworks from a running process by leveraging vmmap. In this chapter, 
we’ll perform a similar task by manually parsing the Mach-O. This static 
approach will extract direct dependencies only, excluding recursion; that 
is to say, we won’t extract the dependencies of dependencies. Moreover, 
libraries directly loaded by the binary at runtime are not dependencies  
per se and thus will not be extracted. While simple, this technique should 
help us understand the Mach-O’s capabilities and doesn’t require exe-
cuting external binaries like vmmap. Also, the code will run against any 
Mach-O binary without requiring it to be currently executing.

Finding Dependency Paths
To extract a binary’s dependencies, we can enumerate its LC_LOAD_DYLIB load 
commands, each of which contains a path to a library or framework on 
which the Mach-O depends. The dylib_command structure describes these 
load commands:

struct dylib_command {
    uint32_t       cmd;          /* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB, LC_REEXPORT_DYLIB */
    uint32_t       cmdsize;      /* includes pathname string */
    struct dylib   dylib;        /* the library identification */
};

We’ll extract these dependencies in a function named extractDependencies 
that accepts a pointer to a Mach-O header and returns an array containing 
the names of dependencies.

N O T E  To keep things simple, we won’t take into account LC_LOAD_WEAK_DYLIB load commands, 
which describe optional dependencies.

In Listing 2-12, the code starts by invoking the findLoadCommand helper 
function to !nd load commands whose type is LC_LOAD_DYLIB. It then iterates 
over each of these load commands to extract the dependency’s path.
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NSMutableArray* extractDependencies(struct mach_header_64* header) {
    ...
    NSMutableArray* commands = findLoadCommand(header, LC_LOAD_DYLIB);

    for(NSValue* command in commands) {
        // Add code here to extract each dependency.
    }

Listing 2-12: Finding all LC_LOAD_DYLIB load commands

Let’s now extract the name of each dependency. To understand how we’ll 
do so, take a look at the dylib structure that describes a dependency. This 
structure is the last member of the dylib_command structure used to describe 
LC_LOAD_DYLIB load commands:

struct dylib {
    union lc_str  name;                  /* library's path name */
    uint32_t timestamp;                  /* library's build time stamp */
    uint32_t current_version;            /* library's current version number */
    uint32_t compatibility_version;      /* library's compatibility vers number*/
};

Of interest to us is the structure’s name !eld, whose type is lc_str. A com-
ment in Apple’s loader.h !le explains that we must !rst extract the offset to 
the dependency path and then use it to compute the path’s bytes and length 
(Listing 2-13).

NSMutableArray* dependencies = [NSMutableArray array];

for(NSValue* command in commands) {
    struct dylib_command* dependency = command.pointerValue; 1

    uint32_t offset = dependency->dylib.name.offset; 2
    char* bytes = (char*)dependency + offset;
    NSUInteger length = dependency->cmdsize-offset;

    NSString* path = [[NSString alloc] initWithBytes:bytes length:length encoding:NSUTF8 
    StringEncoding]; 3

    [dependencies addObject:path];
}

Listing 2-13: Extracting a dependency from an LC_LOAD_DYLIB load command

We previously stored the pointer to each matching load command as an 
NSValue object, so we must !rst extract these 1. Then we extract the offset to 
the dependency path and use it to compute the path’s bytes and length 2. 
Now we can easily extract the path into a string object and save it into an 
array 3. We return this array containing all dependencies once the enu-
meration is complete.
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When we compile and run this code against CloudMensis, it outputs 
the following:

% ./parseBinary CloudMensis/WindowServer
...
Dependencies: (count: 12): (
    ...
    "/usr/lib/libobjc.A.dylib",
    "/usr/lib/libSystem.B.dylib",
    ...
    "/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
    "/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration"
)

Notice the inclusion of the DiskArbitration framework we mentioned ear-
lier. Once again, we can use otool, this time with the -L #ag, to con!rm the 
accuracy of our code:

% otool -L CloudMensis/WindowServer
...
"/usr/lib/libobjc.A.dylib",
"/usr/lib/libSystem.B.dylib",
...
"/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
"/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration"

The dependencies extracted from CloudMensis via otool match those 
extracted by our code, so we can move on to analyzing them.

Analyzing Dependencies
The majority of CloudMensis’s dependencies are system libraries and 
frameworks, such as libobjc.A.dylib and libSystem.B.dylib. Essentially all 
Mach-O binaries link against these, and from the point of view of malware 
detection, they’re uninteresting. However, the DiskArbitration dependency is 
notable, as it provides the DA* APIs to interact with external disks. Here is a 
snippet of CloudMensis’s decompiled binary code showing its interactions 
with the DiskArbitration APIs:

-(void)loop_usb {
    rax = DASessionCreate(**_kCFAllocatorDefault);
  1 DARegisterDiskAppearedCallback(rax, 0x0, OnDiskAppeared, 0x0);
    ...
}

int OnDiskAppeared() {
    ...
  2 r13 = DADiskCopyDescription(rdi);
    rax = CFDictionaryGetValue(r13, **_kDADiskDescriptionVolumeNameKey);
    r14 = [NSString stringWithFormat:@"/Volumes/%@", rax];
    ...

    rax = [functions alloc];
    r15 = [rax randPathWithPrefix:0x64 isZip:0x0];
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    rax = [FileTreeXML alloc];
    [rax startFileTree:r14 dropPath:r15];
    ...
    [rax MoveToFileStore:r15 Copy:0x0];
    rax = [NSURL fileURLWithPath:r14];
    r14 = [NSMutableArray arrayWithObject:rax];

    rax = [functions alloc];
    [rax SearchAndMoveFS:r14 removable:0x1];
    ...
}

First, in a function named loop_usb, the malware invokes various 
DiskArbitration APIs to register a callback that the operating system will 
invoke automatically once a new disk appears 1. When this OnDiskAppeared 
callback is invoked—for example, when an external USB drive is inserted—
it calls other DA* APIs, such as DADiskCopyDescription 2, to access information 
about the new disk. The remainder of the code in the OnDiskAppeared callback 
is responsible for generating a !le listing, then copying !les off the drive 
into a custom !le store. These !les eventually get ex!ltrated to the attacker’s 
remote command-and-control server.

Let’s run the dependency code against another malware sample that 
leverages even more frameworks to achieve a wide range of offensive capa-
bilities. Mokes is a cross-platform cyber-espionage implant that has infected 
macOS users in attacks leveraging browser zero-days.6 Running the depen-
dency extractor code against the malware’s binary, named storeuserd, gener-
ates the following output:

% ./parseBinary Mokes/storeuserd
...
Dependencies: (count: 25): (
    "/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
    "/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit",
    "/System/Library/Frameworks/ApplicationServices.framework/Versions/A/ApplicationServices",
    "/System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices",
    "/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation",
    "/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation",
    "/System/Library/Frameworks/Security.framework/Versions/A/Security",
    "/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration",
    "/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa",
    "/System/Library/Frameworks/Carbon.framework/Versions/A/Carbon",
    "/System/Library/Frameworks/AudioToolbox.framework/Versions/A/AudioToolbox",
    "/System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio",
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/AVFoundation.framework/Versions/A/AVFoundation",
    "/System/Library/Frameworks/CoreMedia.framework/Versions/A/CoreMedia",
    "/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit",
    "/System/Library/Frameworks/AudioUnit.framework/Versions/A/AudioUnit",
    "/System/Library/Frameworks/CoreWLAN.framework/Versions/A/CoreWLAN",
    ...
)
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Several of these dependencies shed light on the malware’s capabilities 
and could guide future analysis. For example, the malware leverages the 
AVFoundation framework to record audio and video from the mic and webcam 
of an infected host. It also uses CoreWLAN to enumerate and monitor network 
interfaces and DiskArbitration to monitor external storage drives to !nd and 
ex!ltrate !les of interest.

Of course, dependencies alone can’t prove that code is malicious. For 
example, a binary that links against the AVFoundation isn’t necessarily spy-
ing on the user; it might be a legitimate videoconferencing app or simply 
be making use of the framework for benign multimedia-related tasks. 
However, taking a look at the following snippet of disassembly from Mokes 
con!rms that it does indeed leverage AVFoundation APIs in a nefarious 
manner:

rax = AVFAudioInputSelectorControl::createCaptureDevice();
...
rax = [AVCaptureDeviceInput deviceInputWithDevice:rax error:&var_28];
...
QMetaObject::tr(..., "Could not connect the video recorder");

This excerpt shows the code interfacing with the webcam to spy on 
victims.

Another reason to extract dependencies from a Mach-O binary is to 
detect malicious subversions. ZuRu is one such example. Its malware 
authors surreptitiously trojanized popular applications such as iTerm by 
adding a malicious dependency to them, then distributed the applications 
via sponsored ads that would appear as the !rst result when users searched 
online for the applications.

The subversion was stealthy, as it left the original application’s function-
ality wholly intact. However, extracting dependencies quickly reveals the 
malicious dependency. To demonstrate this, let’s !rst extract the dependen-
cies from a legitimate copy of iTerm2:

% ./parseBinary /Applications/iTerm.app/Contents/MacOS/iTerm2
...
Dependencies: (count: 33):
    "/usr/lib/libaprutil-1.0.dylib",
    "/usr/lib/libicucore.A.dylib",
    "/usr/lib/libc++.1.dylib",
    "@rpath/BetterFontPicker.framework/Versions/A/BetterFontPicker",
    "@rpath/SearchableComboListView.framework/Versions/A/SearchableComboListView",
    "/System/Library/Frameworks/OpenDirectory.framework/Versions/A/OpenDirectory",
    ...
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/WebKit.framework/Versions/A/WebKit",
    "/usr/lib/libsqlite3.dylib",
    "/usr/lib/libz.1.dylib"
)

Nothing unusual here. Now, if we extract the dependencies from a tro-
janized instance of iTerm, we uncover a new dependency, libcrypto.2.dylib, 
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located in the application bundle. This dependency sticks out, not only 
because it doesn’t exist in the legitimate application but also because it’s the 
only dependency that uses the @executable_path variable:

% ./parseBinary ZuRu/iTerm.app/Contents/MacOS/iTerm2
...
Dependencies: (count: 34):
    "/usr/lib/libaprutil-1.0.dylib",
    "/usr/lib/libicucore.A.dylib",
    "/usr/lib/libc++.1.dylib",
    "@rpath/BetterFontPicker.framework/Versions/A/BetterFontPicker",
    "@rpath/SearchableComboListView.framework/Versions/A/SearchableComboListView",
    "/System/Library/Frameworks/OpenDirectory.framework/Versions/A/OpenDirectory",
    ...
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/WebKit.framework/Versions/A/WebKit",
    "/usr/lib/libsqlite3.dylib",
    "/usr/lib/libz.1.dylib",
    "@executable_path/../Frameworks/libcrypto.2.dylib"
)

There is nothing inherently malicious about the @executable_path vari-
able; it simply tells the loader how to relatively resolve the library’s path 
(meaning the library is likely embedded in the same bundle as the execut-
able). Nevertheless, the addition of a new dependency that referenced a 
newly added library clearly warranted additional analysis, and such analysis 
revealed that the dependency contained all of the malware’s malicious logic.7

Extracting Symbols
A binary’s symbols contain the names of the binary’s functions or methods 
and those of the APIs it imports. These function names can reveal the !le’s 
capabilities and even provide indicators that it is malicious. For example, 
let’s extract the symbols from malware called DazzleSpy using the macOS  
nm tool:

% nm DazzleSpy/softwareupdate
...
"+[Exec doShellInCmd:]",
"-[ShellClassObject startPty]",
"-[MethodClass getIPAddress]",
"-[MouseClassObject PostMouseEvent::::]",
"-[KeychainClassObject getPasswordFromSecKeychainItemRef:]"
...

From the format of these symbols, we can tell that the malware was 
written in Objective-C. The Objective-C runtime requires method names 
to remain intact in the compiled binary, so understanding the binaries’ 
capabilities is often relatively easy. For example, the symbols embedded in 
DazzleSpy reveal methods that appear to execute shell commands, survey 
the system, post mouse events, and steal passwords from the keychain.
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It’s worth noting, though, that nothing stops malware authors from 
using misleading method names, so you should never draw conclusions 
solely from extracted symbols. You might also encounter symbols that 
have been obfuscated (providing a pretty good indication that the binary 
has something to hide). Finally, the authors may have stripped a binary to 
remove symbols that aren’t essential for program execution.

Later in the nm symbol output for DazzleSpy, we also !nd APIs that the 
malware imports from system libraries and frameworks:

_bind
_connect
_AVMediaTypeVideo
_AVCaptureSessionRuntimeErrorNotification
_NSFullUserName
_SecKeychainItemCopyContent

These include networking APIs such as bind and connect related to 
the malware’s backdoor capabilities, AVFoundation imports related to its 
remote desktop capabilities, and APIs to survey a system and grab items 
from the victim’s keychain.

How can we extract a Mach-O binary’s symbols programmatically? As 
you’ll see, this requires yet again parsing the binary’s load commands. We’ll 
focus speci!cally on the LC_SYMTAB load command, which contains informa-
tion about a binary’s symbols found in the symbol table (hence the load 
command’s suf!x SYMTAB). This load command consists of a symtab_command 
structure, de!ned in loader.h:

struct symtab_command {
    uint32_t        cmd;            /* LC_SYMTAB */
    uint32_t        cmdsize;        /* sizeof(struct symtab_command) */
    uint32_t        symoff;         /* symbol table offset */
    uint32_t        nsyms;          /* number of symbol table entries */
    uint32_t        stroff;         /* string table offset */
    uint32_t        strsize;        /* string table size in bytes */
};

The symoff member contains the offset of the symbol table, while nsyms 
contains the number of entries in this table. The symbol table consists of 
nlist_64 structures, de!ned in nlist.h:

struct nlist_64 {
    union {
        uint32_t  n_strx;  /* index into the string table */
    } n_un;
    uint8_t n_type;        /* type flag, see below */
    uint8_t n_sect;        /* section number or NO_SECT */
    uint16_t n_desc;       /* see <mach-o/stab.h> */
    uint64_t n_value;      /* value of this symbol (or stab offset) */
};



Parsing Binaries!!!61

Each nlist_64 structure in the symbol table contains an index to the 
string table, in the n_strx !eld. We can !nd the string table’s offset in the 
symtab_command structure’s stroff !eld. By adding the speci!ed index from 
n_strx to this offset, we can retrieve the symbol as a NULL-terminated string. 
Thus, to extract a binary’s symbols, we must perform the following steps:

 1. Find the LC_SYMTAB load command that contains the symtab_command 
structure.

 2. Use the symoff member of the symtab_command structure to !nd the offset 
of the symbol table.

 3. Use the stroff member of the symtab_command structure to !nd the offset 
of the string table.

 4. Iterate through all of the symbol table’s nlist_64 structures to extract 
each symbol’s index (n_strx) into the string table.

 5. Apply this index to the string table to !nd the name of the symbol.

The function in Listing 2-14 implements these steps. Given a pointer to a 
Mach-O header, it saves all symbols into an array and returns it to the caller.

NSMutableArray* extractSymbols(struct mach_header_64* header) {
    NSMutableArray* symbols = [NSMutableArray array];

    NSMutableArray* commands = findLoadCommand(header, LC_SYMTAB);
    struct symtab_command* symTableCmd = ((NSValue*)commands.firstObject).pointerValue; 1

    void* symbolTable = (((void*)header) + symTableCmd->symoff); 2
    void* stringTable = (((void*)header) + symTableCmd->stroff); 3
    struct nlist_64* nlist = (struct nlist_64*)symbolTable; 4
    for(uint32_t j = 0; j < symTableCmd->nsyms; j++) { 5
        char* symbol = (char*)stringTable + nlist->n_un.n_strx; 6
        if(0 != symbol[0]) {
            [symbols addObject:[NSString stringWithUTF8String:symbol]];
        }
        nlist++;
    }
    return symbols;
}

Listing 2-14: Extracting a binary’s symbols

Because this function is somewhat involved, we’ll walk through it in detail. 
First, it !nds the LC_SYMTAB load command by means of the findLoadCommand 
helper function 1. It then uses the !elds in the load command’s symtab 
_command structure to compute the in-memory address of both the symbol 
table 2 and the string table 3. After initializing a pointer to the !rst 
nlist_64 structure, found at the start of the symbol table 4, the code iter-
ates over it and all subsequent nlist_64 structures 5. For each of these struc-
tures, it adds the index to the string table to compute the address of the 
symbol’s string representation 6. If the symbol is not NULL, the code adds it 
to an array to return to the caller.
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Let’s compile and run this code against DazzleSpy. As we can see, the 
code is able to extract the malware’s method names, as well as the API 
imports it invokes:

% ./parseBinary DazzleSpy/softwareupdate
...
Symbols (count: 3101): (

"-[ShellClassObject startPty]",
"-[ShellClassObject startTask]",

"-[MethodClass getDiskSize]",
"-[MethodClass getDiskFreeSize]",
"-[MethodClass getDiskSystemSize]",
"-[MethodClass getAllhardwareports]",
"-[MethodClass getIPAddress]",

"-[MouseClassObject PostMouseEvent::::]",
"-[MouseClassObject postScrollEvent:]",

"-[KeychainClassObject getPass:cmdTo:]",
"-[KeychainClassObject getPasswordFromSecKeychainItemRef:]",

"_bind",
"_connect",
...
"_AVMediaTypeVideo",
"_AVCaptureSessionRuntimeErrorNotification",
)

The ability to extract symbols from any Mach-O binary will improve our 
heuristic malware detection. Next, we’ll programmatically detect anomalous 
characteristics that often indicate a binary is up to something nefarious.

N O T E  Newer binaries may contain a LC_DYLD_CHAINED_FIXUPS load command that optimizes 
how symbols and imports are handled on recent versions of macOS. In this case, a 
different approach is needed to extract embedded symbols. See the extractChained 
Symbols function in the parseBinary project for more details and a programmatic 
implementation of such extraction.

Detecting Packed Binaries
An executable packer is a tool that compresses binary code to shrink its size 
for distribution. The packer inserts a small unpacker stub at the binary’s 
entry point, and this stub executes automatically when the packed program 
is run, restoring the original code in memory.

Malware authors are quite fond of packers, as compressed code is more 
dif!cult to analyze. Moreover, certain packers encrypt or further obfuscate 
the binary in an attempt to thwart signature-based detections and compli-
cate analysis. Legitimate software is rarely packed on macOS, so the ability 
to detect obfuscation can be a powerful heuristic for #agging binaries that 
warrant closer inspection.
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I’ll wrap up this chapter by showing how to detect packed and encrypted 
Mach-O binaries by looking for a lack of dependencies and symbols, anoma-
lous section and segment names, and high entropy.

Dependencies and Symbols
One simple, albeit somewhat naive, approach to packer detection is enu-
merating a binary’s dependencies and symbols—or, rather, lack thereof. 
Nonpacked binaries will always have dependencies on various system frame-
works and libraries such as libSystem.B.dylib, as well as imports from these 
dependencies. Packed binaries, on the other hand, may lack even a single 
dependency or symbol, as the unpacker stub will dynamically resolve and 
load any required libraries.

A binary with no dependencies or symbols is, at the very least, anoma-
lous, and our tool should #ag it for analysis. For example, running the 
dependency and symbol extraction code against the oRAT malware !nds 
no dependencies or symbols:

% ./parseBinary oRat/darwinx64
...
Dependencies: (count: 0): ( )
Symbols: (count: 0): ( )

Apple’s otool and nm con!rm this absence as well:

% otool -L oRat/darwinx64
oRat/darwinx64:

% nm oRat/darwinx64
oRat/darwinx64: no symbols

It turns out oRAT is packed via UPX, a cross-platform packer that Mac 
malware authors favor. Examples of other macOS malware packed with 
UPX include IPStorm, ZuRu, and Coldroot.

Section and Segment Names
Binaries packed with UPX may contain UPX-speci!c section or segment 
names, such as __XHDR, UPX_DATA, or upxTEXT. If we !nd these names when 
parsing a Mach-O binary’s segments, we can conclude that the binary was 
packed. Other packers, such as MPress, add their own segment names, such 
as __MPRESS__.

The following code snippet, from UPX’s p_mach.cpp !le,8 shows refer-
ences to nonstandard segment names:

if (!strcmp("__XHDR", segptr->segname)) {
    // PackHeader precedes __LINKEDIT
    style = 391;  // UPX 3.91
}
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if (!strcmp("__TEXT", segptr->segname)) {
    ptrTEXT = segptr;
    style = 391;  // UPX 3.91
}
if (!strcmp("UPX_DATA", segptr->segname)) {
    // PackHeader follows loader at __LINKEDIT
    style = 392;  // UPX 3.92
}

To retrieve a binary’s section and segment names, we can iterate through 
its load commands, looking for those of type LC_SEGMENT_64. These load com-
mands consist of segment_command_64 structures that contain a member named 
segname with the name of the segment. Here is the segment_command _64 structure:

struct segment_command_64 { /* for 64-bit architectures */
    uint32_t        cmd;            /* LC_SEGMENT_64 */
    uint32_t        cmdsize;        /* includes sizeof section_64 structs */
    char            segname[16];    /* segment name */
    ...
    uint32_t        nsects;         /* number of sections in segment */
    uint32_t        flags;          /* flags */
};

Any sections within the segment should immediately follow the segment  
_command_64 structure, whose nsects member speci!es the number of sections. 
The section_64 structure, shown here, describes sections:

struct section_64 { /* for 64-bit architectures */
    char            sectname[16];   /* name of this section */
    char            segname[16];    /* segment this section goes in */
    ...
};

Since the segment name can be extracted from the segment_command_64 
structure, here we’re solely interested in the section name, sectname. To 
detect packers such as UPX, our code can iterate through each segment 
and its sections, comparing the names with those of common packers. First, 
though, we need a function that accepts a Mach-O header, then extracts 
the binary’s segments and sections. The extractSegments AndSections function 
 partially shown in Listing 2-15 does exactly this.

NSMutableArray* extractSegmentsAndSections(struct mach_header_64* header) {

    NSMutableArray* names = [NSMutableArray array];
    NSCharacterSet* nullCharacterSet = [NSCharacterSet
    characterSetWithCharactersInString:@"\0"];

    NSMutableArray* commands = findLoadCommand(header, LC_SEGMENT_64);
    for(NSValue* command in commands) {
        // Add code here to iterate over each segment and its sections.
    }



Parsing Binaries!!!65

    return names;
}

Listing 2-15: Retrieving a list of LC_SEGMENT_64 load commands

This code declares a few variables and then invokes the now-familiar 
findLoadCommand helper function with a value of LC_SEGMENT_64. Now that we 
have a list of the load commands describing each segment in the binary, we 
can iterate over each, saving their names and the names of all their sections 
(Listing 2-16).

NSMutableArray* extractSegmentsAndSections(struct mach_header_64* header) {
    NSMutableArray* names = [NSMutableArray array];
    ...

    for(NSValue* command in commands) {
        struct segment_command_64* segment = command.pointerValue; 1

        NSString* name = [[NSString alloc] initWithBytes:segment->segname
        length:sizeof(segment->segname) encoding:NSASCIIStringEncoding]; 2

        name = [name stringByTrimmingCharactersInSet:nullCharacterSet];
        [names addObject:name];

         struct section_64* section = (struct section_64*)((unsigned char*)segment +
        sizeof(struct segment_command_64)); 3

        for(uint32_t i = 0; i < segment->nsects; i++) { 4
            name = [[NSString alloc] initWithBytes:section->sectname
            length:sizeof(section->sectname) encoding:NSASCIIStringEncoding]; 5

            name = [name stringByTrimmingCharactersInSet:nullCharacterSet];
            [names addObject:name];

            section++;
        }
    }
    return names;
}

Listing 2-16: Iterating over each segment and its sections to extract their names

After extracting the pointer to each LC_SEGMENT_64 and saving it into a 
struct segment_command_64* 1, the code extracts the name of the segment 
from the segname member of the segment_command_64 structure, stored in a 
rather unwieldy (and not necessarily NULL-terminated) char array. The code 
converts it into a string object, trims any NULLs, and then saves it into an 
array to return to the caller 2.

Next, we iterate over the section_64 structures found in the LC_SEGMENT_64 
command. One structure exists for each section in the segment. Because 
they begin immediately after the segment_command_64 structure, we initialize  
a pointer to the !rst section_64 structure, adding the start of the segment 
_ command_64 structure to the size of this structure 3. Now we can iterate 
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over each section structure, bounded by the nsects member of the segment 
structure 4. As with each segment name, we extract, convert, trim, and 
save the section names 5.

Once we’ve extracted all segment and section names, we pass this list to a 
simple helper function named isPacked. Shown in Listing 2-17, it checks whether 
any names match those of well-known packers, such as UPX and MPress.

NSMutableSet* isPacked(NSMutableArray* segsAndSects) {
    NSSet* packers = [NSSet setWithObjects:@"__XHDR", @"upxTEXT", @"__MPRESS__", nil]; 1

    NSMutableSet* packedNames = [NSMutableSet setWithArray:segsAndSects]; 2
    [packedNames intersectSet:packers]; 3

    return packedNames;
}

Listing 2-17: Checking for segment and section names matching those of known packers

First, we initialize a set with a few well-known packer-related segment 
and section names 1. Then we convert the list of segments and sections into 
a mutable set 2, as mutable set objects support the intersectSet: method, 
which will remove any items in the !rst set that aren’t in the second. Once 
we’ve called this method 3, the only names left in the set of segment and sec-
tion names will match the packer-related ones.

After adding this code to the parseBinary project, we can run it against 
the macOS variant of the IPStorm malware:

% ./parseBinary IPStorm/IPStorm
binary is Mach-O
...
segments and sections: (
    "__PAGEZERO",
    "__TEXT",
    "upxTEXT",
    "__LINKEDIT"
)

binary appears to be packed
packer-related section or segment {( upxTEXT )} detected

Because the IPStorm binary contains a section named upxTEXT indicative 
of UPX, our code correctly ascertains that the binary is packed.

This name-based approach to packer detection has a low false-positive 
detection rate. However, it won’t detect custom packers or even modi!ed 
versions of known packers. For example, if an attacker modi!es UPX to 
remove custom section names (which, as UPX is open source, is easy to do), 
we’ll have a false negative, and the packed binary won’t be detected.

We !nd an example of this behavior in the malware known as Ocean- 
Lotus. In variant H, its authors packed the binary, "ashlightd, with a cus-
tomized version of UPX. Our current packer detector fails to determine that 
the malware is packed:
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% ./parseBinary OceanLotus.H/flashlightd
binary is Mach-O
...
segments and sections: (
    "__PAGEZERO",
    "__TEXT",
    "__cfstring",
    "__LINKEDIT"
)

binary does not appear to be packed
no packer-related sections or segments detected

However, if we manually examine the malware, it becomes fairly obvi-
ous that the binary is packed. In a disassembler, large chunks of the binary 
appear obfuscated. We can also see that the binary contains no symbols or 
dependencies:

% ./parseBinary OceanLotus.H/flashlightd
binary is Mach-O
...
Dependencies: (count: 0): ()
Symbols: (count: 0): ()

Clearly, our packer detection approach needs some improvement. You’ll 
see how to detect packed binaries via their entropy next.

Entropy Calculations
When a binary is packed, the amount of randomness in it greatly increases. 
This is largely due to the fact that packers either compress or encrypt the 
binary’s original instructions. If we can calculate a binary’s quantity of 
unique bytes and classify it as anomalously high, we can fairly accurately 
conclude the binary is packed.

Let’s parse a Mach-O binary and calculate the entropy of its executable 
segments. The code in Listing 2-18 builds on the segment parsing code 
in the isPackedByEntropy function. After enumerating all LC_SEGMENT_64 load 
commands, the function invokes a helper function named calcEntropy on 
each to calculate the entropy of the segment’s data.

float calcEntropy(unsigned char* data, NSUInteger length) {
    float pX = 0.0f;
    float entropy = 0.0f;
    unsigned int occurrences[256] = {0};

    for(NSUInteger i = 0; i < length; i++) {
      1 occurrences[0xFF & (int)data[i]]++;
    }

    for(NSUInteger i = 0; i < sizeof(occurrences)/sizeof(occurrences[0]); i++) {
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      2 if(0 == occurrences[i]) {
            continue;
        }

      3 pX = occurrences[i]/(float)length;
        entropy -= pX*log2(pX);

    }
    return entropy;
}

Listing 2-18: Computing the Shannon entropy

The function !rst computes the number of occurrences of each byte 
value, from 0 to 0xFF 1. After skipping values that don’t occur 2, it performs  
a standard formula 3 to compute the Shannon entropy.9 The function should 
return a value between 0.0 and 8.0, ranging from no entropy (meaning all 
the values are the same) to the highest level of entropy.10

The code uses the entropy to determine whether the binary is likely 
packed (Listing 2-19). It’s inspired by the popular Windows-centric 
AnalyzePE and pe!le Python libraries.11

BOOL isPackedByEntropy(struct mach_header_64* header, NSUInteger size) {
    ...
    BOOL isPacked = NO;
    float compressedData = 0.0f;

    NSMutableArray* commands = findLoadCommand(header, LC_SEGMENT_64);
    for(NSValue* command in commands) {
        ...
        struct segment_command_64* segment = command.pointerValue;

        float segmentEntropy = calcEntropy(((unsigned char*)header +
        segment->fileoff), segment->filesize);

      1 if(segmentEntropy > 7.0f) {
            compressedData += segment->filesize;
        }
    }

  2 if((compressedData/size) > .2) {
        isPacked = YES;
    }
    ...
    return isPacked;
}

Listing 2-19: Packer detection via entropy analysis

Testing has shown that if the entropy of an average-size segment is above 
7.0, we can con!dently conclude that the segment contains compressed data, 
meaning it’s either packed or encrypted. In this case, we append the segment’s 
size to a variable to keep track of the total amount of compressed data 1.

Once we’ve computed the entropy of each segment, we check how much 
of the binary’s total data is packed by dividing the amount of compressed 
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data by the size of the Mach-O. Research has shown that Mach-O binaries 
with a ratio of packed data to overall length greater than 20 percent are 
likely packed (though the ratio is usually much higher) 2.

Let’s test this code against the packed IPStorm sample:

% ./parseBinary IPStorm/IPStorm
binary is Mach-O
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 8216576) __TEXT's entropy: 7.884009
segment (size: 16) __LINKEDIT's entropy: 0.000000

total compressed data: 8216576.000000
total compressed data vs. size: 0.999998

binary appears to be packed
significant amount of high-entropy data detected

Hooray! The code correctly detected that the malware is packed. This 
is because the __TEXT segment has a very high entropy (7.884 out of 8), and 
because it’s the only segment containing any data, the ratio of packed data 
to the overall binary length is very high. Equally important is the fact that 
the code correctly determined that an unpacked version of the malware is 
indeed no longer packed:

% ./parseBinary IPStorm/IPStorm_unpacked
binary is Mach-O
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 17190912) __TEXT's entropy: 6.185554
segment (size: 1265664) __DATA's entropy: 5.337738
segment (size: 1716348) __LINKEDIT's entropy: 5.618924

total compressed data: 0.000000
total compressed data vs. size: 0.000000

binary does *not* appear to be packed
no significant amount of high-entropy data detected

In this unpacked binary, the tool detects more segments, but all have an 
entropy of around 6 or below. Thus, it doesn’t classify any of them as contain-
ing compressed data, so the ratio of compressed data to binary size is zero.

As you’ve seen, this entropy-based approach can generically detect 
almost any packed binary, regardless of the packer used. This holds true 
even in the case of OceanLotus, whose authors used a customized version 
of UPX in an attempt to avoid detection:

% ./parseBinary OceanLotus.H/flashlightd
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 45056) __TEXT's entropy: 7.527715
segment (size: 2888) __LINKEDIT's entropy: 6.201859
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total compressed data: 45056.000000
total compressed data vs. size: 0.939763

binary appears to be packed
significant amount of high-entropy data detected

Although the packed malware doesn’t contain any segments or sections 
that match known packers, the large __TEXT segment contains a very high 
amount of entropy (7.5+). As such, the code correctly determines that the 
OceanLotus sample is packed.

Detecting Encrypted Binaries
While Apple encrypts the Intel versions of various system binaries, encrypted 
third-party binaries are rarely legitimate, and you should #ag these for closer 
analysis. Binary encryptors encrypt the original malware code at the binary 
level. To automatically decrypt the malware at runtime, the encryptor will 
often insert a decryption stub and keying information at the start of the 
binary unless the operating system natively supports encrypted binaries, 
which macOS does.

As with packed binaries, we can detect encrypted binaries using entropy 
calculations, as any well-encrypted !le will have a very high level of random-
ness. Thus, the code provided in the previous section should identify them. 
However, you might !nd it worthwhile to write code that focuses speci!cally 
on detecting binaries encrypted with the native macOS encryption scheme. 
The encryption scheme is undocumented and proprietary, so any third-
party binary leveraging it should be treated as suspect.

We can see in the open source macOS Mach-O loader12 how to detect 
such binaries. In the loader’s code, we !nd mention of an LC_SEGMENT_64 
#ag value named SG_PROTECTED_VERSION_1 whose value is 0x8. As explained 
in Apple’s mach-o/loader.h !le, this means the segment is encrypted with 
Apple’s proprietary encryption scheme:

#define SG_PROTECTED_VERSION_1  0x8 /* This segment is protected.  If the
                                       segment starts at file offset 0, the
                                       first page of the segment is not
                                       protected.  All other pages of the
                                       segment are protected. */

Usually, malware will encrypt only the __TEXT segment, which contains 
the binary’s executable code.

Although it’s rare to discover malware leveraging this proprietary 
encryption scheme, we !nd an example in a HackingTeam implant installer. 
Using otool, let’s dump the load commands of this binary. Sure enough, the 
#ags of the __TEXT segment are set to SG_PROTECTED_VERSION_1 (0x8):

% otool -l HackingTeam/installer
...
Load command 1
      cmd LC_SEGMENT
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  cmdsize 328
  segname __TEXT
   vmaddr 0x00001000
   vmsize 0x00004000
  fileoff 0
 filesize 16384
  maxprot 0x00000007
 initprot 0x00000005
   nsects 4
    flags 0x8

To detect if a binary is encrypted using this native encryption scheme, 
we can simply iterate over its LC_SEGMENT_64 load commands, looking for 
any that have the SG_PROTECTED_VERSION_1 bits set in the flags member of the 
segment_command_64 structure (Listing 2-20).

if(SG_PROTECTED_VERSION_1 == (segment->flags & SG_PROTECTED_VERSION_1)) {
    // Segment is encrypted.
    // Add code here to report this or to perform further processing.
}

Listing 2-20: Checking whether a segment is encrypted with the native macOS encryption 
scheme

This chapter has focused on 64-bit Mach-Os, but the HackingTeam 
installer is almost 10 years old and was distributed as a 32-bit Intel binary, 
which isn’t compatible with recent versions of macOS. To write code 
capable of detecting HackingTeam’s 32-bit installer, we’d have to make 
sure it uses the 32-bit versions of the Mach-O structures, such as mach_header 
and LC_SEGMENT.13 If we made these changes and ran the code against the 
installer, it would correctly #ag the binary as leveraging Apple’s proprietary 
encryption scheme:

% ./parseBinary HackingTeam/installer
...
segment __TEXT's flags: 'SG_PROTECTED_VERSION_1'

binary is encrypted

We noted that though macOS does natively support encrypted binaries, 
because this is not documented, any third-party binary that is encrypted in 
this manner should be closely examined, as it may be malware with some-
thing to hide.14

Conclusion
In this chapter, you learned how to con!rm that a !le is a Mach-O or a uni-
versal binary containing Mach-Os. Then you extracted dependencies and 
names and detected whether the binary was packed or encrypted.
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Of course, there are many other interesting things you could do with 
a Mach-O binary to classify it as benign or malicious. Take a look at Kimo 
Bumanglag’s Objective by the Sea talk for ideas.15

A !nal thought: I’ve noted that no single data point covered in this chap-
ter can de!nitively indicate that a binary is malicious. For example, nothing 
stops legitimate developers from packing their binaries. Luckily, we have 
another powerful mechanism at our disposal to detect malware: code sign-
ing. Chapter 3 is dedicated to this topic. Read on!
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